457.3 457.3 457.3 triangle

Equilateral triangle.

Sides: a = 457.3   b = 457.3   c = 457.3

Area: T = 90553.04108315
Perimeter: p = 1371.9
Semiperimeter: s = 685.95

Angle ∠ A = α = 60° = 1.04771975512 rad
Angle ∠ B = β = 60° = 1.04771975512 rad
Angle ∠ C = γ = 60° = 1.04771975512 rad

Height: ha = 396.0333417151
Height: hb = 396.0333417151
Height: hc = 396.0333417151

Median: ma = 396.0333417151
Median: mb = 396.0333417151
Median: mc = 396.0333417151

Inradius: r = 132.011113905
Circumradius: R = 264.02222781

Vertex coordinates: A[457.3; 0] B[0; 0] C[228.65; 396.0333417151]
Centroid: CG[228.65; 132.011113905]
Coordinates of the circumscribed circle: U[228.65; 132.011113905]
Coordinates of the inscribed circle: I[228.65; 132.011113905]

Exterior(or external, outer) angles of the triangle:
∠ A' = α' = 120° = 1.04771975512 rad
∠ B' = β' = 120° = 1.04771975512 rad
∠ C' = γ' = 120° = 1.04771975512 rad

How did we calculate this triangle?

Now we know the lengths of all three sides of the triangle and the triangle is uniquely determined. Next we calculate another its characteristics - same procedure as calculation of the triangle from the known three sides SSS. 1. The triangle circumference is the sum of the lengths of its three sides 2. Semiperimeter of the triangle 3. The triangle area using Heron's formula 4. Calculate the heights of the triangle from its area. 5. Calculation of the inner angles of the triangle using a Law of Cosines     