4 4 6 triangle
Obtuse isosceles triangle.
Sides: a = 4 b = 4 c = 6Area: T = 7.93772539332
Perimeter: p = 14
Semiperimeter: s = 7
Angle ∠ A = α = 41.41096221093° = 41°24'35″ = 0.72327342478 rad
Angle ∠ B = β = 41.41096221093° = 41°24'35″ = 0.72327342478 rad
Angle ∠ C = γ = 97.18107557815° = 97°10'51″ = 1.6966124158 rad
Height: ha = 3.96986269666
Height: hb = 3.96986269666
Height: hc = 2.64657513111
Median: ma = 4.69904157598
Median: mb = 4.69904157598
Median: mc = 2.64657513111
Inradius: r = 1.1343893419
Circumradius: R = 3.02437157841
Vertex coordinates: A[6; 0] B[0; 0] C[3; 2.64657513111]
Centroid: CG[3; 0.88219171037]
Coordinates of the circumscribed circle: U[3; -0.3787964473]
Coordinates of the inscribed circle: I[3; 1.1343893419]
Exterior(or external, outer) angles of the triangle:
∠ A' = α' = 138.5990377891° = 138°35'25″ = 0.72327342478 rad
∠ B' = β' = 138.5990377891° = 138°35'25″ = 0.72327342478 rad
∠ C' = γ' = 82.81992442185° = 82°49'9″ = 1.6966124158 rad
Calculate another triangle
How did we calculate this triangle?
Now we know the lengths of all three sides of the triangle and the triangle is uniquely determined. Next we calculate another its characteristics - same procedure as calculation of the triangle from the known three sides SSS.
1. The triangle circumference is the sum of the lengths of its three sides

2. Semiperimeter of the triangle

3. The triangle area using Heron's formula

4. Calculate the heights of the triangle from its area.

5. Calculation of the inner angles of the triangle using a Law of Cosines

6. Inradius

7. Circumradius
