2 10 11 triangle

Obtuse scalene triangle.

Sides: a = 2   b = 10   c = 11

Area: T = 9.05219334951
Perimeter: p = 23
Semiperimeter: s = 11.5

Angle ∠ A = α = 9.47328720666° = 9°28'22″ = 0.16553328072 rad
Angle ∠ B = β = 55.37664645208° = 55°22'35″ = 0.9676501634 rad
Angle ∠ C = γ = 115.1510663413° = 115°9'2″ = 2.01097582124 rad

Height: ha = 9.05219334951
Height: hb = 1.8110386699
Height: hc = 1.646580609

Median: ma = 10.46442247682
Median: mb = 6.1243724357
Median: mc = 4.66436895265

Vertex coordinates: A[11; 0] B[0; 0] C[1.13663636364; 1.646580609]
Centroid: CG[4.04554545455; 0.549860203]
Coordinates of the circumscribed circle: U[5.5; -2.58223212259]
Coordinates of the inscribed circle: I[1.5; 0.78771246517]

Exterior(or external, outer) angles of the triangle:
∠ A' = α' = 170.5277127933° = 170°31'38″ = 0.16553328072 rad
∠ B' = β' = 124.6243535479° = 124°37'25″ = 0.9676501634 rad
∠ C' = γ' = 64.84993365875° = 64°50'58″ = 2.01097582124 rad

How did we calculate this triangle?

Now we know the lengths of all three sides of the triangle and the triangle is uniquely determined. Next we calculate another its characteristics - same procedure as calculation of the triangle from the known three sides SSS. 1. The triangle circumference is the sum of the lengths of its three sides 2. Semiperimeter of the triangle 3. The triangle area using Heron's formula 4. Calculate the heights of the triangle from its area. 5. Calculation of the inner angles of the triangle using a Law of Cosines    