12 12 14 triangle
Acute isosceles triangle.
Sides: a = 12 b = 12 c = 14Area: T = 68.22875604137
Perimeter: p = 38
Semiperimeter: s = 19
Angle ∠ A = α = 54.31546652873° = 54°18'53″ = 0.94879697414 rad
Angle ∠ B = β = 54.31546652873° = 54°18'53″ = 0.94879697414 rad
Angle ∠ C = γ = 71.37106694253° = 71°22'14″ = 1.24656531708 rad
Height: ha = 11.37112600689
Height: hb = 11.37112600689
Height: hc = 9.74767943448
Median: ma = 11.57658369028
Median: mb = 11.57658369028
Median: mc = 9.74767943448
Inradius: r = 3.59109242323
Circumradius: R = 7.3877044135
Vertex coordinates: A[14; 0] B[0; 0] C[7; 9.74767943448]
Centroid: CG[7; 3.24989314483]
Coordinates of the circumscribed circle: U[7; 2.36597502098]
Coordinates of the inscribed circle: I[7; 3.59109242323]
Exterior(or external, outer) angles of the triangle:
∠ A' = α' = 125.6855334713° = 125°41'7″ = 0.94879697414 rad
∠ B' = β' = 125.6855334713° = 125°41'7″ = 0.94879697414 rad
∠ C' = γ' = 108.6299330575° = 108°37'46″ = 1.24656531708 rad
Calculate another triangle
How did we calculate this triangle?
Now we know the lengths of all three sides of the triangle and the triangle is uniquely determined. Next we calculate another its characteristics - same procedure as calculation of the triangle from the known three sides SSS.
1. The triangle circumference is the sum of the lengths of its three sides

2. Semiperimeter of the triangle

3. The triangle area using Heron's formula

4. Calculate the heights of the triangle from its area.

5. Calculation of the inner angles of the triangle using a Law of Cosines

6. Inradius

7. Circumradius
