6 28 28 triangle

Acute isosceles triangle.

Sides: a = 6   b = 28   c = 28

Area: T = 83.51664654425
Perimeter: p = 62
Semiperimeter: s = 31

Angle ∠ A = α = 12.30112796559° = 12°18'5″ = 0.21546978322 rad
Angle ∠ B = β = 83.84993601721° = 83°50'58″ = 1.46334474107 rad
Angle ∠ C = γ = 83.84993601721° = 83°50'58″ = 1.46334474107 rad

Height: ha = 27.83988218142
Height: hb = 5.96554618173
Height: hc = 5.96554618173

Median: ma = 27.83988218142
Median: mb = 14.62987388383
Median: mc = 14.62987388383

Vertex coordinates: A[28; 0] B[0; 0] C[0.64328571429; 5.96554618173]
Centroid: CG[9.54876190476; 1.98884872724]
Coordinates of the circumscribed circle: U[14; 1.5098684537]
Coordinates of the inscribed circle: I[3; 2.69440795304]

Exterior(or external, outer) angles of the triangle:
∠ A' = α' = 167.6998720344° = 167°41'55″ = 0.21546978322 rad
∠ B' = β' = 96.15106398279° = 96°9'2″ = 1.46334474107 rad
∠ C' = γ' = 96.15106398279° = 96°9'2″ = 1.46334474107 rad

How did we calculate this triangle?

Now we know the lengths of all three sides of the triangle and the triangle is uniquely determined. Next we calculate another its characteristics - same procedure as calculation of the triangle from the known three sides SSS. 1. The triangle circumference is the sum of the lengths of its three sides 2. Semiperimeter of the triangle 3. The triangle area using Heron's formula 4. Calculate the heights of the triangle from its area. 5. Calculation of the inner angles of the triangle using a Law of Cosines    