Triangle calculator SSA

Please enter two sides and a non-included angle
°


Triangle has two solutions with side c=183.10879316788 and with side c=34.406593721

#1 Obtuse scalene triangle.

Sides: a = 120   b = 90   c = 183.10879316788

Area: T = 4643.08553478206
Perimeter: p = 393.10879316788
Semiperimeter: s = 196.55439658394

Angle ∠ A = α = 34.29875702283° = 34°17'51″ = 0.59986055259 rad
Angle ∠ B = β = 25° = 0.4366332313 rad
Angle ∠ C = γ = 120.70224297717° = 120°42'9″ = 2.10766548147 rad

Height: ha = 77.3854755797
Height: hb = 103.1879674396
Height: hc = 50.71441914089

Median: ma = 131.20331147566
Median: mb = 148.11990646805
Median: mc = 53.553251011

Inradius: r = 23.622244551
Circumradius: R = 106.47990712419

Vertex coordinates: A[183.10879316788; 0] B[0; 0] C[108.75769344444; 50.71441914089]
Centroid: CG[97.28882887077; 16.90547304696]
Coordinates of the circumscribed circle: U[91.55439658394; -54.36660183535]
Coordinates of the inscribed circle: I[106.55439658394; 23.622244551]

Exterior (or external, outer) angles of the triangle:
∠ A' = α' = 145.70224297717° = 145°42'9″ = 0.59986055259 rad
∠ B' = β' = 155° = 0.4366332313 rad
∠ C' = γ' = 59.29875702283° = 59°17'51″ = 2.10766548147 rad

How did we calculate this triangle?

The calculation of the triangle has two phases. The first phase calculates all three sides of the triangle from the input parameters. The first phase is different for the different triangles query entered. The second phase calculates other triangle characteristics, such as angles, area, perimeter, heights, the center of gravity, circle radii, etc. Some input data also results in two to three correct triangle solutions (e.g., if the specified triangle area and two sides - typically resulting in both acute and obtuse) triangle).

1. Use the Law of Cosines

a=120 b=90 β=25°  b2=a2+c22accosβ 902=1202+c22 120 c cos25°  c2217.514c+6300=0  p=1;q=217.514;r=6300 D=q24pr=217.5142416300=22112.283158972 D>0  c1,2=2pq±D=2217.51±22112.28 c1,2=108.75693444±74.350997234355 c1=183.10793167875 c2=34.405937210043   Factored form of the equation:  (c183.10793167875)(c34.405937210043)=0   c>0

We know the lengths of all three sides of the triangle, so the triangle is uniquely specified. Next, we calculate another of its characteristics - the same procedure for calculating the triangle from the known three sides SSS.
a=120 b=90 c=183.11

2. The triangle perimeter is the sum of the lengths of its three sides

p=a+b+c=120+90+183.11=393.11

3. Semiperimeter of the triangle

The semiperimeter of the triangle is half its perimeter. The semiperimeter frequently appears in formulas for triangles to be given a separate name. By the triangle inequality, the longest side length of a triangle is less than the semiperimeter.

s=2p=2393.11=196.55

4. The triangle area using Heron's formula

Heron's formula gives the area of a triangle when the length of all three sides is known. There is no need to calculate angles or other distances in the triangle first. Heron's formula works equally well in all cases and types of triangles.

T=s(sa)(sb)(sc) T=196.55(196.55120)(196.5590)(196.55183.11) T=21558241.55=4643.09

5. Calculate the heights of the triangle from its area.

There are many ways to find the height of the triangle. The easiest way is from the area and base length. The triangle area is half of the product of the base's length and height. Every side of the triangle can be a base; there are three bases and three heights (altitudes). Triangle height is the perpendicular line segment from a vertex to a line containing the base.

T=2aha  ha=a2 T=1202 4643.09=77.38 hb=b2 T=902 4643.09=103.18 hc=c2 T=183.112 4643.09=50.71

6. Calculation of the inner angles of the triangle using a Law of Cosines

The Law of Cosines is useful for finding a triangle's angles when we know all three sides. The cosine rule, also known as the Law of Cosines, relates all three sides of a triangle with an angle of a triangle. The Law of Cosines extrapolates the Pythagorean theorem for any triangle. Pythagorean theorem works only in a right triangle. Pythagorean theorem is a special case of the Law of Cosines and can be derived from it because the cosine of 90° is 0. It is best to find the angle opposite the longest side first. With the Law of Cosines, there is also no problem with obtuse angles as with the Law of Sines because the cosine function is negative for obtuse angles, zero for right, and positive for acute angles. We also use inverse cosine called arccosine to determine the angle from the cosine value.

a2=b2+c22bccosα  α=arccos(2bcb2+c2a2)=arccos(2 90 183.11902+183.1121202)=34°1751"  b2=a2+c22accosβ β=arccos(2aca2+c2b2)=arccos(2 120 183.111202+183.112902)=25° γ=180°αβ=180°34°1751"25°=120°429"

7. Inradius

An incircle of a triangle is a tangent circle to each side. An incircle center is called an incenter and has a radius named inradius. All triangles have an incenter, and it always lies inside the triangle. The incenter is the intersection of the three-angle bisectors. The product of the inradius and semiperimeter (half the perimeter) of a triangle is its area.

T=rs r=sT=196.554643.09=23.62

8. Circumradius

The circumcircle of a triangle is a circle that passes through all of the triangle's vertices, and the circumradius of a triangle is the radius of the triangle's circumcircle. The circumcenter (center of the circumcircle) is the point where the perpendicular bisectors of a triangle intersect.

R=4 rsabc=4 23.622 196.554120 90 183.11=106.48

9. Calculation of medians

A median of a triangle is a line segment joining a vertex to the opposite side's midpoint. Every triangle has three medians, and they all intersect each other at the triangle's centroid. The centroid divides each median into parts in the ratio of 2:1, with the centroid being twice as close to the midpoint of a side as it is to the opposite vertex. We use Apollonius's theorem to calculate the length of a median from the lengths of its side.

ma=22b2+2c2a2=22 902+2 183.1121202=131.203 mb=22c2+2a2b2=22 183.112+2 1202902=148.119 mc=22a2+2b2c2=22 1202+2 902183.112=53.553


#2 Obtuse scalene triangle.

Sides: a = 120   b = 90   c = 34.406593721

Area: T = 872.43546426361
Perimeter: p = 244.406593721
Semiperimeter: s = 122.2032968605

Angle ∠ A = α = 145.70224297717° = 145°42'9″ = 2.54329871277 rad
Angle ∠ B = β = 25° = 0.4366332313 rad
Angle ∠ C = γ = 9.29875702283° = 9°17'51″ = 0.16222732129 rad

Height: ha = 14.54105773773
Height: hb = 19.3877436503
Height: hc = 50.71441914089

Median: ma = 32.27882319474
Median: mb = 75.94400043301
Median: mc = 104.66216351448

Inradius: r = 7.1399226261
Circumradius: R = 106.47990712419

Vertex coordinates: A[34.406593721; 0] B[0; 0] C[108.75769344444; 50.71441914089]
Centroid: CG[47.72109572181; 16.90547304696]
Coordinates of the circumscribed circle: U[17.2032968605; 105.08802097624]
Coordinates of the inscribed circle: I[32.2032968605; 7.1399226261]

Exterior (or external, outer) angles of the triangle:
∠ A' = α' = 34.29875702283° = 34°17'51″ = 2.54329871277 rad
∠ B' = β' = 155° = 0.4366332313 rad
∠ C' = γ' = 170.70224297717° = 170°42'9″ = 0.16222732129 rad

Calculate another triangle

How did we calculate this triangle?

The calculation of the triangle has two phases. The first phase calculates all three sides of the triangle from the input parameters. The first phase is different for the different triangles query entered. The second phase calculates other triangle characteristics, such as angles, area, perimeter, heights, the center of gravity, circle radii, etc. Some input data also results in two to three correct triangle solutions (e.g., if the specified triangle area and two sides - typically resulting in both acute and obtuse) triangle).

1. Use the Law of Cosines

a=120 b=90 β=25°  b2=a2+c22accosβ 902=1202+c22 120 c cos25°  c2217.514c+6300=0  p=1;q=217.514;r=6300 D=q24pr=217.5142416300=22112.283158972 D>0  c1,2=2pq±D=2217.51±22112.28 c1,2=108.75693444±74.350997234355 c1=183.10793167875 c2=34.405937210043   Factored form of the equation:  (c183.10793167875)(c34.405937210043)=0   c>0

We know the lengths of all three sides of the triangle, so the triangle is uniquely specified. Next, we calculate another of its characteristics - the same procedure for calculating the triangle from the known three sides SSS.
a=120 b=90 c=34.41

2. The triangle perimeter is the sum of the lengths of its three sides

p=a+b+c=120+90+34.41=244.41

3. Semiperimeter of the triangle

The semiperimeter of the triangle is half its perimeter. The semiperimeter frequently appears in formulas for triangles to be given a separate name. By the triangle inequality, the longest side length of a triangle is less than the semiperimeter.

s=2p=2244.41=122.2

4. The triangle area using Heron's formula

Heron's formula gives the area of a triangle when the length of all three sides is known. There is no need to calculate angles or other distances in the triangle first. Heron's formula works equally well in all cases and types of triangles.

T=s(sa)(sb)(sc) T=122.2(122.2120)(122.290)(122.234.41) T=761142.21=872.43

5. Calculate the heights of the triangle from its area.

There are many ways to find the height of the triangle. The easiest way is from the area and base length. The triangle area is half of the product of the base's length and height. Every side of the triangle can be a base; there are three bases and three heights (altitudes). Triangle height is the perpendicular line segment from a vertex to a line containing the base.

T=2aha  ha=a2 T=1202 872.43=14.54 hb=b2 T=902 872.43=19.39 hc=c2 T=34.412 872.43=50.71

6. Calculation of the inner angles of the triangle using a Law of Cosines

The Law of Cosines is useful for finding a triangle's angles when we know all three sides. The cosine rule, also known as the Law of Cosines, relates all three sides of a triangle with an angle of a triangle. The Law of Cosines extrapolates the Pythagorean theorem for any triangle. Pythagorean theorem works only in a right triangle. Pythagorean theorem is a special case of the Law of Cosines and can be derived from it because the cosine of 90° is 0. It is best to find the angle opposite the longest side first. With the Law of Cosines, there is also no problem with obtuse angles as with the Law of Sines because the cosine function is negative for obtuse angles, zero for right, and positive for acute angles. We also use inverse cosine called arccosine to determine the angle from the cosine value.

a2=b2+c22bccosα  α=arccos(2bcb2+c2a2)=arccos(2 90 34.41902+34.4121202)=145°429"  b2=a2+c22accosβ β=arccos(2aca2+c2b2)=arccos(2 120 34.411202+34.412902)=25° γ=180°αβ=180°145°429"25°=9°1751"

7. Inradius

An incircle of a triangle is a tangent circle to each side. An incircle center is called an incenter and has a radius named inradius. All triangles have an incenter, and it always lies inside the triangle. The incenter is the intersection of the three-angle bisectors. The product of the inradius and semiperimeter (half the perimeter) of a triangle is its area.

T=rs r=sT=122.2872.43=7.14

8. Circumradius

The circumcircle of a triangle is a circle that passes through all of the triangle's vertices, and the circumradius of a triangle is the radius of the triangle's circumcircle. The circumcenter (center of the circumcircle) is the point where the perpendicular bisectors of a triangle intersect.

R=4 rsabc=4 7.139 122.203120 90 34.41=106.48

9. Calculation of medians

A median of a triangle is a line segment joining a vertex to the opposite side's midpoint. Every triangle has three medians, and they all intersect each other at the triangle's centroid. The centroid divides each median into parts in the ratio of 2:1, with the centroid being twice as close to the midpoint of a side as it is to the opposite vertex. We use Apollonius's theorem to calculate the length of a median from the lengths of its side.

ma=22b2+2c2a2=22 902+2 34.4121202=32.278 mb=22c2+2a2b2=22 34.412+2 1202902=75.94 mc=22a2+2b2c2=22 1202+2 90234.412=104.662

Calculate another triangle

Look also at our friend's collection of math problems and questions:

See more information about triangles or more details on solving triangles.