Triangle calculator SSA

Please enter two sides and a non-included angle
°


Triangle has two solutions with side c=142.5044239816 and with side c=30.70108409409

#1 Obtuse scalene triangle.

Sides: a = 100   b = 75   c = 142.5044239816

Area: T = 3562.60659954
Perimeter: p = 317.5044239816
Semiperimeter: s = 158.7522119908

Angle ∠ A = α = 41.81103148958° = 41°48'37″ = 0.73297276562 rad
Angle ∠ B = β = 30° = 0.52435987756 rad
Angle ∠ C = γ = 108.1989685104° = 108°11'23″ = 1.88882662218 rad

Height: ha = 71.2522119908
Height: hb = 95.0032826544
Height: hc = 50

Median: ma = 102.3054590233
Median: mb = 117.2549644702
Median: mc = 52.30333020814

Inradius: r = 22.44113128937
Circumradius: R = 75

Vertex coordinates: A[142.5044239816; 0] B[0; 0] C[86.60325403784; 50]
Centroid: CG[76.36989267315; 16.66766666667]
Coordinates of the circumscribed circle: U[71.2522119908; -23.41222918276]
Coordinates of the inscribed circle: I[83.7522119908; 22.44113128937]

Exterior (or external, outer) angles of the triangle:
∠ A' = α' = 138.1989685104° = 138°11'23″ = 0.73297276562 rad
∠ B' = β' = 150° = 0.52435987756 rad
∠ C' = γ' = 71.81103148958° = 71°48'37″ = 1.88882662218 rad


How did we calculate this triangle?

The calculation of the triangle progress in two phases. The first phase is such that we try to calculate all three sides of the triangle from the input parameters. The first phase is different for the different triangles query entered. The second phase is the calculation of other characteristics of the triangle, such as angles, area, perimeter, heights, the center of gravity, circle radii, etc. Some input data also results in two to three correct triangle solutions (e.g., if the specified triangle area and two sides - typically resulting in both acute and obtuse) triangle).

1. Use the Law of Cosines

a=100 b=75 β=30  b2=a2+c22accosβ 752=1002+c22 100 c cos(30)  c2173.205c+4375=0  p=1;q=173.205;r=4375 D=q24pr=173.2052414375=12500 D>0  c1,2=q±D2p=173.21±125002 c1,2=86.60254038±55.9016994375 c1=142.504239816 c2=30.7008409409   Factored form of the equation:  (c142.504239816)(c30.7008409409)=0   c>0a = 100 \ \\ b = 75 \ \\ β = 30^\circ \ \\ \ \\ b^2 = a^2 + c^2 - 2ac \cos β \ \\ 75^2 = 100^2 + c^2 -2 \cdot \ 100 \cdot \ c \cdot \ \cos (30^\circ ) \ \\ \ \\ c^2 -173.205c +4375 =0 \ \\ \ \\ p=1; q=-173.205; r=4375 \ \\ D = q^2 - 4pr = 173.205^2 - 4\cdot 1 \cdot 4375 = 12500 \ \\ D>0 \ \\ \ \\ c_{1,2} = \dfrac{ -q \pm \sqrt{ D } }{ 2p } = \dfrac{ 173.21 \pm \sqrt{ 12500 } }{ 2 } \ \\ c_{1,2} = 86.60254038 \pm 55.9016994375 \ \\ c_{1} = 142.504239816 \ \\ c_{2} = 30.7008409409 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ (c -142.504239816) (c -30.7008409409) = 0 \ \\ \ \\ \ \\ c>0

Now we know the lengths of all three sides of the triangle, and the triangle is uniquely determined. Next, we calculate another its characteristics - same procedure as calculation of the triangle from the known three sides SSS.

a=100 b=75 c=142.5a = 100 \ \\ b = 75 \ \\ c = 142.5

2. The triangle perimeter is the sum of the lengths of its three sides

p=a+b+c=100+75+142.5=317.5p = a+b+c = 100+75+142.5 = 317.5

3. Semiperimeter of the triangle

The semiperimeter of the triangle is half its perimeter. The semiperimeter frequently appears in formulas for triangles that it is given a separate name. By the triangle inequality, the longest side length of a triangle is less than the semiperimeter.

s=p2=317.52=158.75s = \dfrac{ p }{ 2 } = \dfrac{ 317.5 }{ 2 } = 158.75

4. The triangle area using Heron's formula

Heron's formula gives the area of a triangle when the length of all three sides are known. There is no need to calculate angles or other distances in the triangle first. Heron's formula works equally well in all cases and types of triangles.

T=s(sa)(sb)(sc) T=158.75(158.75100)(158.7575)(158.75142.5) T=12692161.48=3562.61T = \sqrt{ s(s-a)(s-b)(s-c) } \ \\ T = \sqrt{ 158.75(158.75-100)(158.75-75)(158.75-142.5) } \ \\ T = \sqrt{ 12692161.48 } = 3562.61

5. Calculate the heights of the triangle from its area.

There are many ways to find the height of the triangle. The easiest way is from the area and base length. The area of a triangle is half of the product of the length of the base and the height. Every side of the triangle can be a base; there are three bases and three heights (altitudes). Triangle height is the perpendicular line segment from a vertex to a line containing the base.

T=aha2  ha=2 Ta=2 3562.61100=71.25 hb=2 Tb=2 3562.6175=95 hc=2 Tc=2 3562.61142.5=50T = \dfrac{ a h _a }{ 2 } \ \\ \ \\ h _a = \dfrac{ 2 \ T }{ a } = \dfrac{ 2 \cdot \ 3562.61 }{ 100 } = 71.25 \ \\ h _b = \dfrac{ 2 \ T }{ b } = \dfrac{ 2 \cdot \ 3562.61 }{ 75 } = 95 \ \\ h _c = \dfrac{ 2 \ T }{ c } = \dfrac{ 2 \cdot \ 3562.61 }{ 142.5 } = 50

6. Calculation of the inner angles of the triangle using a Law of Cosines

The Law of Cosines is useful for finding the angles of a triangle when we know all three sides. The cosine rule, also known as the law of cosines, relates all three sides of a triangle with an angle of a triangle. The Law of Cosines is the extrapolation of the Pythagorean theorem for any triangle. Pythagorean theorem works only in a right triangle. Pythagorean theorem is a special case of the Law of Cosines and can be derived from it because the cosine of 90° is 0. It is best to find the angle opposite the longest side first. With the Law of Cosines, there is also no problem with obtuse angles as with the Law of Sines, because cosine function is negative for obtuse angles, zero for right, and positive for acute angles. We also use inverse cosine called arccosine to determine the angle from cosine value.

a2=b2+c22bccosα  α=arccos(b2+c2a22bc)=arccos(752+142.5210022 75 142.5)=414837"  b2=a2+c22accosβ β=arccos(a2+c2b22ac)=arccos(1002+142.527522 100 142.5)=30 γ=180αβ=180414837"30=1081123"a^2 = b^2+c^2 - 2bc \cos α \ \\ \ \\ α = \arccos(\dfrac{ b^2+c^2-a^2 }{ 2bc } ) = \arccos(\dfrac{ 75^2+142.5^2-100^2 }{ 2 \cdot \ 75 \cdot \ 142.5 } ) = 41^\circ 48'37" \ \\ \ \\ b^2 = a^2+c^2 - 2ac \cos β \ \\ β = \arccos(\dfrac{ a^2+c^2-b^2 }{ 2ac } ) = \arccos(\dfrac{ 100^2+142.5^2-75^2 }{ 2 \cdot \ 100 \cdot \ 142.5 } ) = 30^\circ \ \\ γ = 180^\circ - α - β = 180^\circ - 41^\circ 48'37" - 30^\circ = 108^\circ 11'23"

7. Inradius

An incircle of a triangle is a circle which is tangent to each side. An incircle center is called incenter and has a radius named inradius. All triangles have an incenter, and it always lies inside the triangle. The incenter is the intersection of the three angle bisectors. The product of the inradius and semiperimeter (half the perimeter) of a triangle is its area.

T=rs r=Ts=3562.61158.75=22.44T = rs \ \\ r = \dfrac{ T }{ s } = \dfrac{ 3562.61 }{ 158.75 } = 22.44

8. Circumradius

The circumcircle of a triangle is a circle that passes through all of the triangle's vertices, and the circumradius of a triangle is the radius of the triangle's circumcircle. Circumcenter (center of circumcircle) is the point where the perpendicular bisectors of a triangle intersect.

R=abc4 rs=100 75 142.54 22.441 158.752=75R = \dfrac{ a b c }{ 4 \ r s } = \dfrac{ 100 \cdot \ 75 \cdot \ 142.5 }{ 4 \cdot \ 22.441 \cdot \ 158.752 } = 75

9. Calculation of medians

A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side. Every triangle has three medians, and they all intersect each other at the triangle's centroid. The centroid divides each median into parts in the ratio 2:1, with the centroid being twice as close to the midpoint of a side as it is to the opposite vertex. We use Apollonius's theorem to calculate the length of a median from the lengths of its side.

ma=2b2+2c2a22=2 752+2 142.5210022=102.305 mb=2c2+2a2b22=2 142.52+2 10027522=117.25 mc=2a2+2b2c22=2 1002+2 752142.522=52.303m_a = \dfrac{ \sqrt{ 2b^2+2c^2 - a^2 } }{ 2 } = \dfrac{ \sqrt{ 2 \cdot \ 75^2+2 \cdot \ 142.5^2 - 100^2 } }{ 2 } = 102.305 \ \\ m_b = \dfrac{ \sqrt{ 2c^2+2a^2 - b^2 } }{ 2 } = \dfrac{ \sqrt{ 2 \cdot \ 142.5^2+2 \cdot \ 100^2 - 75^2 } }{ 2 } = 117.25 \ \\ m_c = \dfrac{ \sqrt{ 2a^2+2b^2 - c^2 } }{ 2 } = \dfrac{ \sqrt{ 2 \cdot \ 100^2+2 \cdot \ 75^2 - 142.5^2 } }{ 2 } = 52.303



#2 Obtuse scalene triangle.

Sides: a = 100   b = 75   c = 30.70108409409

Area: T = 767.5211023524
Perimeter: p = 205.7010840941
Semiperimeter: s = 102.855042047

Angle ∠ A = α = 138.1989685104° = 138°11'23″ = 2.41218649974 rad
Angle ∠ B = β = 30° = 0.52435987756 rad
Angle ∠ C = γ = 11.81103148958° = 11°48'37″ = 0.20661288806 rad

Height: ha = 15.35504204705
Height: hb = 20.4677227294
Height: hc = 50

Median: ma = 27.99659071516
Median: mb = 63.75875157706
Median: mc = 87.04551870661

Inradius: r = 7.46224976739
Circumradius: R = 75

Vertex coordinates: A[30.70108409409; 0] B[0; 0] C[86.60325403784; 50]
Centroid: CG[39.10111271065; 16.66766666667]
Coordinates of the circumscribed circle: U[15.35504204705; 73.41222918276]
Coordinates of the inscribed circle: I[27.85504204705; 7.46224976739]

Exterior (or external, outer) angles of the triangle:
∠ A' = α' = 41.81103148958° = 41°48'37″ = 2.41218649974 rad
∠ B' = β' = 150° = 0.52435987756 rad
∠ C' = γ' = 168.1989685104° = 168°11'23″ = 0.20661288806 rad

Calculate another triangle

How did we calculate this triangle?

The calculation of the triangle progress in two phases. The first phase is such that we try to calculate all three sides of the triangle from the input parameters. The first phase is different for the different triangles query entered. The second phase is the calculation of other characteristics of the triangle, such as angles, area, perimeter, heights, the center of gravity, circle radii, etc. Some input data also results in two to three correct triangle solutions (e.g., if the specified triangle area and two sides - typically resulting in both acute and obtuse) triangle).

1. Use the Law of Cosines

a=100 b=75 β=30  b2=a2+c22accosβ 752=1002+c22 100 c cos(30)  c2173.205c+4375=0  p=1;q=173.205;r=4375 D=q24pr=173.2052414375=12500 D>0  c1,2=q±D2p=173.21±125002 c1,2=86.60254038±55.9016994375 c1=142.504239816 c2=30.7008409409   Factored form of the equation:  (c142.504239816)(c30.7008409409)=0   c>0a = 100 \ \\ b = 75 \ \\ β = 30^\circ \ \\ \ \\ b^2 = a^2 + c^2 - 2ac \cos β \ \\ 75^2 = 100^2 + c^2 -2 \cdot \ 100 \cdot \ c \cdot \ \cos (30^\circ ) \ \\ \ \\ c^2 -173.205c +4375 =0 \ \\ \ \\ p=1; q=-173.205; r=4375 \ \\ D = q^2 - 4pr = 173.205^2 - 4\cdot 1 \cdot 4375 = 12500 \ \\ D>0 \ \\ \ \\ c_{1,2} = \dfrac{ -q \pm \sqrt{ D } }{ 2p } = \dfrac{ 173.21 \pm \sqrt{ 12500 } }{ 2 } \ \\ c_{1,2} = 86.60254038 \pm 55.9016994375 \ \\ c_{1} = 142.504239816 \ \\ c_{2} = 30.7008409409 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ (c -142.504239816) (c -30.7008409409) = 0 \ \\ \ \\ \ \\ c>0

Now we know the lengths of all three sides of the triangle, and the triangle is uniquely determined. Next, we calculate another its characteristics - same procedure as calculation of the triangle from the known three sides SSS.

a=100 b=75 c=30.7a = 100 \ \\ b = 75 \ \\ c = 30.7

2. The triangle perimeter is the sum of the lengths of its three sides

p=a+b+c=100+75+30.7=205.7p = a+b+c = 100+75+30.7 = 205.7

3. Semiperimeter of the triangle

The semiperimeter of the triangle is half its perimeter. The semiperimeter frequently appears in formulas for triangles that it is given a separate name. By the triangle inequality, the longest side length of a triangle is less than the semiperimeter.

s=p2=205.72=102.85s = \dfrac{ p }{ 2 } = \dfrac{ 205.7 }{ 2 } = 102.85

4. The triangle area using Heron's formula

Heron's formula gives the area of a triangle when the length of all three sides are known. There is no need to calculate angles or other distances in the triangle first. Heron's formula works equally well in all cases and types of triangles.

T=s(sa)(sb)(sc) T=102.85(102.85100)(102.8575)(102.8530.7) T=589088.52=767.52T = \sqrt{ s(s-a)(s-b)(s-c) } \ \\ T = \sqrt{ 102.85(102.85-100)(102.85-75)(102.85-30.7) } \ \\ T = \sqrt{ 589088.52 } = 767.52

5. Calculate the heights of the triangle from its area.

There are many ways to find the height of the triangle. The easiest way is from the area and base length. The area of a triangle is half of the product of the length of the base and the height. Every side of the triangle can be a base; there are three bases and three heights (altitudes). Triangle height is the perpendicular line segment from a vertex to a line containing the base.

T=aha2  ha=2 Ta=2 767.52100=15.35 hb=2 Tb=2 767.5275=20.47 hc=2 Tc=2 767.5230.7=50T = \dfrac{ a h _a }{ 2 } \ \\ \ \\ h _a = \dfrac{ 2 \ T }{ a } = \dfrac{ 2 \cdot \ 767.52 }{ 100 } = 15.35 \ \\ h _b = \dfrac{ 2 \ T }{ b } = \dfrac{ 2 \cdot \ 767.52 }{ 75 } = 20.47 \ \\ h _c = \dfrac{ 2 \ T }{ c } = \dfrac{ 2 \cdot \ 767.52 }{ 30.7 } = 50

6. Calculation of the inner angles of the triangle using a Law of Cosines

The Law of Cosines is useful for finding the angles of a triangle when we know all three sides. The cosine rule, also known as the law of cosines, relates all three sides of a triangle with an angle of a triangle. The Law of Cosines is the extrapolation of the Pythagorean theorem for any triangle. Pythagorean theorem works only in a right triangle. Pythagorean theorem is a special case of the Law of Cosines and can be derived from it because the cosine of 90° is 0. It is best to find the angle opposite the longest side first. With the Law of Cosines, there is also no problem with obtuse angles as with the Law of Sines, because cosine function is negative for obtuse angles, zero for right, and positive for acute angles. We also use inverse cosine called arccosine to determine the angle from cosine value.

a2=b2+c22bccosα  α=arccos(b2+c2a22bc)=arccos(752+30.7210022 75 30.7)=1381123"  b2=a2+c22accosβ β=arccos(a2+c2b22ac)=arccos(1002+30.727522 100 30.7)=30 γ=180αβ=1801381123"30=114837"a^2 = b^2+c^2 - 2bc \cos α \ \\ \ \\ α = \arccos(\dfrac{ b^2+c^2-a^2 }{ 2bc } ) = \arccos(\dfrac{ 75^2+30.7^2-100^2 }{ 2 \cdot \ 75 \cdot \ 30.7 } ) = 138^\circ 11'23" \ \\ \ \\ b^2 = a^2+c^2 - 2ac \cos β \ \\ β = \arccos(\dfrac{ a^2+c^2-b^2 }{ 2ac } ) = \arccos(\dfrac{ 100^2+30.7^2-75^2 }{ 2 \cdot \ 100 \cdot \ 30.7 } ) = 30^\circ \ \\ γ = 180^\circ - α - β = 180^\circ - 138^\circ 11'23" - 30^\circ = 11^\circ 48'37"

7. Inradius

An incircle of a triangle is a circle which is tangent to each side. An incircle center is called incenter and has a radius named inradius. All triangles have an incenter, and it always lies inside the triangle. The incenter is the intersection of the three angle bisectors. The product of the inradius and semiperimeter (half the perimeter) of a triangle is its area.

T=rs r=Ts=767.52102.85=7.46T = rs \ \\ r = \dfrac{ T }{ s } = \dfrac{ 767.52 }{ 102.85 } = 7.46

8. Circumradius

The circumcircle of a triangle is a circle that passes through all of the triangle's vertices, and the circumradius of a triangle is the radius of the triangle's circumcircle. Circumcenter (center of circumcircle) is the point where the perpendicular bisectors of a triangle intersect.

R=abc4 rs=100 75 30.74 7.462 102.85=75R = \dfrac{ a b c }{ 4 \ r s } = \dfrac{ 100 \cdot \ 75 \cdot \ 30.7 }{ 4 \cdot \ 7.462 \cdot \ 102.85 } = 75

9. Calculation of medians

A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side. Every triangle has three medians, and they all intersect each other at the triangle's centroid. The centroid divides each median into parts in the ratio 2:1, with the centroid being twice as close to the midpoint of a side as it is to the opposite vertex. We use Apollonius's theorem to calculate the length of a median from the lengths of its side.

ma=2b2+2c2a22=2 752+2 30.7210022=27.996 mb=2c2+2a2b22=2 30.72+2 10027522=63.758 mc=2a2+2b2c22=2 1002+2 75230.722=87.045m_a = \dfrac{ \sqrt{ 2b^2+2c^2 - a^2 } }{ 2 } = \dfrac{ \sqrt{ 2 \cdot \ 75^2+2 \cdot \ 30.7^2 - 100^2 } }{ 2 } = 27.996 \ \\ m_b = \dfrac{ \sqrt{ 2c^2+2a^2 - b^2 } }{ 2 } = \dfrac{ \sqrt{ 2 \cdot \ 30.7^2+2 \cdot \ 100^2 - 75^2 } }{ 2 } = 63.758 \ \\ m_c = \dfrac{ \sqrt{ 2a^2+2b^2 - c^2 } }{ 2 } = \dfrac{ \sqrt{ 2 \cdot \ 100^2+2 \cdot \ 75^2 - 30.7^2 } }{ 2 } = 87.045

Calculate another triangle


Look also our friend's collection of math problems and questions:

See more information about triangles or more details on solving triangles.