26 30 30 triangle

Acute isosceles triangle.

Sides: a = 26   b = 30   c = 30

Area: T = 351.48111517
Perimeter: p = 86
Semiperimeter: s = 43

Angle ∠ A = α = 51.35985772389° = 51°21'31″ = 0.8966376272 rad
Angle ∠ B = β = 64.32107113805° = 64°19'15″ = 1.12326081908 rad
Angle ∠ C = γ = 64.32107113805° = 64°19'15″ = 1.12326081908 rad

Height: ha = 27.03770116692
Height: hb = 23.432207678
Height: hc = 23.432207678

Median: ma = 27.03770116692
Median: mb = 23.72876210354
Median: mc = 23.72876210354

Vertex coordinates: A[30; 0] B[0; 0] C[11.26766666667; 23.432207678]
Centroid: CG[13.75655555556; 7.811069226]
Coordinates of the circumscribed circle: U[15; 7.21223355342]
Coordinates of the inscribed circle: I[13; 8.17439802721]

Exterior(or external, outer) angles of the triangle:
∠ A' = α' = 128.6411422761° = 128°38'29″ = 0.8966376272 rad
∠ B' = β' = 115.6799288619° = 115°40'45″ = 1.12326081908 rad
∠ C' = γ' = 115.6799288619° = 115°40'45″ = 1.12326081908 rad

How did we calculate this triangle?

Now we know the lengths of all three sides of the triangle and the triangle is uniquely determined. Next we calculate another its characteristics - same procedure as calculation of the triangle from the known three sides SSS. 1. The triangle circumference is the sum of the lengths of its three sides 2. Semiperimeter of the triangle 3. The triangle area using Heron's formula 4. Calculate the heights of the triangle from its area. 5. Calculation of the inner angles of the triangle using a Law of Cosines    